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ABSTRACT— This paper describes synthesizable VDHL implementation of elliptic curve Point Multiplication. Elliptic curves used for 

ECC are defined over mathematical structures called Galois fields. Based on the theory of ECC, this paper has carried out Modular 

addition/subtraction, EC Point doubling/addition, Modular multiplicative inversion, EC point multiplier, projective to affine coordinates 

conversion. Importantly for cryptography, the elliptic curve point multiplication is the operation on which the security of every elliptic curve 

cryptosystem relies on. 
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I. INTRODUCTION 

Since its proposal by Miller [1] and Kobliz [2] in the 

mi1980s, elliptic curve cryptosystem (ECC) has recently 

gained much attention in industry and academia. The main 

reason is that for a properly chosen elliptic curve, no known 

sub-exponential algorithm can be used to break the system 

through the solution of the discrete logarithm problem. This 

means that significantly smaller parameters can be used in 

ECC than in other competitive systems such as RSA and 

ElGamal with equivalent levels of security. Some benefits of 

having smaller key sizes include reductions in processing 

power, storage space, and bandwidth. Due to these many 

advantages of ECC, a number of software [3, 4] and 

hardware [5–13,22–24] implementations have been 

proposed, and included in Many standards such as IEEE 

1363[13] and NIST[14] .  

As well known, software implementations can easily be 

achieved on a general-purpose microprocessor. An operation 

called point addition is defined on an elliptic curve. The 

point addition is an operation, where two points on the curve 

are added and a third point, which is also on the curve, is got. 

Importantly for cryptography, it is very hard to tell which 

two points were added. Furthermore, using consecutive 

point additions, an operation called elliptic curve point 

multiplication is defined. The most exorbitant finite field 

operation for point addition and point doubling is the finite 

field inversion. However, one way to handle finite field 

inversion can be accomplished by transforming them into 

less expensive finite field operation, such as finite field 

addition and multiplication by using projective coordinates. 

 

 

For implementations of ECC, finite fields GF(p) and GF (2
m
) 

have been used, where p is a prime and m is a positive 

integer. In particular, GF(2
m
), which is an m-dimensional 

extension field of GF(2), is suitable for hardware 

implementations because there is no carry propagation in 

arithmetic operations. The most crucial operation in ECC is 

the computation of point multiplication, i.e., computation of 

kP for given integer k and point P on elliptic curve. There 

are many available algorithms for the point multiplication. 

Depending whether the given finite field is GF(2
m
) or 

GF(p) ,or whether the given point P is fixed or random, an 

ideal algorithm for computing kP may vary. However in the 

case of binary field GF (2
m
), the López–Dahab algorithm [5] 

is one of the most popular algorithms. In fact it is a natural 

extension to binary case of so called Montgomery Ladder 

Algorithm, which is especially suit-able for hardware 

implementation because of the data independency of point 

addition and point doubling. All the elliptic curve 

cryptographic blocks are synthesized and simulated using 

Xilinx ISE 13.3 with integrated ISim Simulator. 

 

The reminder of this paper is organized as follows:  

Section II describes basic Field Arithmetic behind ECC.  

The considered components, Algorithms and their 

implementation approaches are described in Section III. 

Simulation results and performance evaluation are discussed 

in section IV and section V concludes the paper. 
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II. METHODOLOGY 

This approach demonstrates ECC Point Multiplication 

structure of moderate gate count and high speed and is 

organized as follows. 

Point multiplication is the operation that dominates the 

execution time of an Elliptic Curve Cryptographic protocol. 

Implementation operation of point multiplication can be 

separated into three distinct layers: 

A. Point multiplication technique 

B. Elliptic curve point addition & doubling 

C. Finite Field Arithmetic 

Operations involved in point multiplication have the 

hierarchical formulation as shown in Fig.1 with point 

multiplication techniques near the top and the fundamental 

finite field arithmetic at the base. For Example one may 

decide to implement  ECDSA signature generation  entirely 

in  hardware  so  that  the  only  input  to  the  device  is  the 

message to be signed, and the only output is the signature 

for that message. 

 

 

Fig. 1: Hierarchy of operation in ECC 

 

Point Multiplication is the basic computation primitive of 
elliptic curve cryptography. The definition of corresponding 
operations depends on a particular field, but they always 
amount to combinations of arithmetic operation (add, 
subtract, multiply, square and divide over the chosen field so 
that software implantation is carried out. The scalar 
multiplication is computed using Algorithm 1. 

A. Point Multiplication 

A basic operation of any elliptic curve cryptosystem is 

an elliptic curve point multiplication given as  

Q = kP = P+P+P+P+……+P                    (1) 

Where P is a point on an elliptic curve E and k is an 

integer in a range 1≤ k < order (P). Accordingly, the elliptic 

curve point multiplication means that the point P is added to 

itself k times. The order of the point P is n0 if and only if P 

multiplied with n0 results in the point at infinity. This is 

formally described as follows: 

Order (P) = n0 ↔ n0P = O∞ 

The strength of an elliptic curve cryptosystem lies in the 

fact that if E, Q and P are given, it is a very hard task to 

recover k. This is a so called Elliptic Curve Discrete 

Logarithm Problem (ECDLP).  

    The integer k is usually very large and, therefore, it 

would be way too slow to calculate Q just by adding P to 

itself k times. Thus, efficient elliptic curve point 

multiplication methods are needed. The simplest and oldest 

of such methods is the binary method which is also known 

as the double-and-add-method. The binary method relies on 

the binary expansion of k. In a binary form, k is given as  

 
and, therefore, l bits are needed to present k in the binary 

form.  

The scalar multiplication of the point P is computed using 

the Algorithm 1. 

Algorithm 1:   Right-to-left    binary    method    for   point 

multiplication 

Input: k = (kl−1, k1, k0) in binary, P belongs to E (F(2
m
)). 

Output: k*P 

1. Q←∞ 

2. For i from 0 to l −1 do 

3. If   k (i) = 1 then Q←Q + P 

4. P←2P 

5. Return (Q) 

There are several methods derived for efficient elliptic 

curve point multiplication, many of which require pre 

computations before the actual point multiplication. These 

pre computations include calculations of intermediate points 

which are then used for speeding up the point multiplication. 

Certain methods use different representations of the integer 

k, so that the number of operations during point 

multiplication can be reduced. 

B. Elliptic curve point addition & doubling 

Consider the Koblitz curve:         y2 + xy = x3 + x2 + 1 

over GF (2) and the extension field L = GF (2
163

). A 

polynomial representation based on the irreducible 

polynomial  

f(x)=x
163

+x
7
+x

6
+x

3
+1               (2) 

will be used. 
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Point addition:  Let P = (x1, y1) belongs to E (F2
m
) and Q= 

(x2, y2) belongs to E (F2
m
), where P not equal to Q. Then P 

+ Q = (x3, y3), where x3 = λ
2 
+ λ + x1 + x2 + a and y3 =λ(x1 + 

x3) + x3 + y1 with λ = (y1 + y2)/(x1 + x2). 

Point doubling: Let P = (x1, y1) belongs to E (F2
m
), where P 

= −P. Then 2P = (x3, y3), and x3 = λ
2 

+ λ + a = x12 + b/x12 

and y3 = x12 + λx3 + x3 with λ = x1+ y1/x1. 

 

Fig. 2:  Point Addition and Point Doubling 

 

C. Finite Field Arithmetic 

Fields are abstractions of familiar number systems (such 

as the rational numbers Q, the real numbers R, and the 

complex numbers C) and their essential properties. They 

consist of a set F together with two operations, addition 

(denoted by +) and multiplication (denoted by ·), that satisfy 

the usual arithmetic properties. If the set F is finite, then the 

field is said to be finite. A field F is equipped with two 

operations, addition and multiplication.  Subtraction of field 

elements is defined in terms of addition and can be given as 

i − j = i + (− j) where − j is the unique element in F such that 

j + (− j) = 0 (− j is called the negative of j).Similarly, 

division of field elements is defined in terms of 

multiplication: with j = 0, i/j = i ·j
−1

 where j
−1

 is the unique 

element in F such that j ·j
−1

 = 1 (
j−1

 is called the inverse of 

j).Arithmetic unit shown in Fig.3 carries out these finite field 

operations. 

 

Fig. 3: Arithmetic unit Block diagram For ECC 

 

Several field operations have been carried out and 

described in details in next section with necessary circuitry 

and mathematics. 

III. IMPLEMENTATION APPROACH  

The computation primitives for executing the elliptic-

curve operations are addition, multiplication, division, 

inversion and squaring over GF (2
m
). The first one amounts 

to the component-by-component addition of the 

corresponding polynomials. The corresponding circuit is 

made up of m XOR gates, and its computation time is equal 

to 1 clock cycle. For multiplying, the generic interleaved 

multiplier model can be used. For dividing, a simplified 

version of binary divider, adapted to the case where p = 2, is 

used. 

A. Point Addition 

       A data path for computing the following equation 

λ = (y1 + y2)/(x1 + x2), x3 = λ
2 

+ λ + x1 + x2 + 1 and y3 =λ(x1 

+ x3) + x3 + y1 is shown below in fig 4.According to the 

structure of the data path, the computation time is 

approximately equal to  

Tpoint-addition  ≈  m ( Tmod- f-product + Tmof-f-division  )         (3) 

To summarize, doubling has been substituted by squaring, a 

simple operation over a binary field. 

 

 
 

Fig. 4:  Point Addition 

 

B. Interleaved Multiplier  

The simplest algorithm for GF (2
m
) multiplication is the 

shift and adds method with the reduction step interleaved. 

Multiplication of two elements a(x), b(x) in GF (2
m
) can be 

given as: 

C(x) = a(x) b(x) mod f(x) = a(x)  
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= ( ) mod f(x)         (4) 

Therefore, the product c(x) can be computer as 

C(x) = (b0a(x) + b1a(x) x + b2a(x) x
2
 +......+ bm-1 a(x) x

m-1
) 

mod f(x)                                                                               (5) 

In this approach Processing of bits of b(x) follows LSB to 

MSB method. In a least-significant-bit (LSB) multiplier, the 

coefficients of b(x) are processed starting from the least-

significant bit b0 and continue with the remaining 

coefficients one at a time in ascending order. We have 

implemented LSB first method because LSB first scheme is 

faster than the MSB first scheme since in LSB first approach 

c(x) and a(x) can be updated in parallel. 

Thus multiplication according to this scheme is 

performed in the following way:  

c(x) = a(x)b(x) mod f(x) 

= (b0 a(x) + b1 a(x)x + b2 a(x)x
2 
+ ... bm-1 a(x)x

m-1
mod f(x) 

= (b0 a(x) + b1(a(x)x) + b2(a(x)x
2 

)+….bm-1(a(x)x
m-1 

))mod 

f(x) 

= (b0 a(x) + b1(a(x)x) + b2(a(x)x)x
 
+….bm-1(a(x)x

m-2 
)x)mod 

f(x)                                                                                       (6)       

Fig. 4 (a and b) depicts the data path for the binary version 

of LSB first multiplier. It is important to note that in the 

LSB and MSB first multiplication schemes, several 

coefficients could be processed at each step.  

 

 

 

 

 

(a) 

 

 

 
 

(b) 

Fig. 4: a and b Interleaved LSB-first multiplier 

C. Squaring  

A straight forward method for implementing field 

squaring in GF (2
m
) using the multiplication algorithms with 

only one input operand in order to perform c(x) = a(x)a(x) 

mod f(x) that is, the operand b(x) is substituted by a(x). 

MSB-first and LSB-first approaches for squaring can also be 

given in a similar manner. Fig. 5 depicts the data path for 

model for squaring which includes the component poly-

reducer. 

 

Fig. 5: Classic squaring 
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D. Binary Division 

The quotient of two polynomials in GF (2
m
) can be 

computed using the binary version of the binary algorithm 

that is used for calculation of gcd from required polynomials.  

The binary algorithm for computing z(x) = g(x)h
-1

(x) 

mod f(x) has been described as follows If p =2, it can be 

simplified. Given two polynomials a(x) and b(x), if both are 

divisible by x, that is, if a0 = b0 = 0, then gcd (a(x), b(x)) = x. 

gcd(a(x)/x, b(x)/x); say b(x), is divisible by x(b0 = 0) and the 

other is not (a0 ≠ 0), then gcd(a(x), b(x)) = gcd(a(x), b(x)/x); 

if none of them is divisible by x then define a new 

polynomial ab(x) = a(x) - a0  b0
-1 

b(x), so that gcd(a(x), b(x)) 

=  gcd(ab(x), b(x)) = gcd(ab(x), a(x)), and ab(x) is divisible 

by x. The corresponding data path is shown in Fig. 6. 

 

 

Fig. 6: Binary algorithm: data path 

 

However based on computational similarities algorithm 

used for binary division can also be used for computing 

inversion as well. Additionally, the complete circuitry 

includes additional integral part for accumulation and 

updating the variables alpha and beta which includes a 

control unit as well.  

E. Point Multiplication 

By combining all the above blocks we can implement 

the point multiplication whose data path is represented in fig 

7. The point-doubling operation can be avoided in the case 

of the two following Koblitz curves over GF (2
m
): 

E0 : y
2 + xy = x3 + 1                                                  (7) 

E1 :  y
2 + xy = x3 + x2 + 1                                        (8) 

For that define the Frobenius map τ from Ec (GF (2
m
)), with 

c= 0 or 1:  

τ (∞) = (∞)     τ(x,y)=(x
2
,y

2
)                                       (9) 

It can be demonstrated that 

2P = − τ
2
 (P) + μτ (P)    

With μ= 1 if c= 1 and μ= − 1 if c= 0. 

Thus the point-doubling operation amounts to squaring 

operations in GF (2
m
) for computing τ(P) and τ

2
(P) and a 

point addition.  

Algorithm 2:   τ -ary representation of k 

1. a := k; b := 0; i := 0; 

2. while a /= 0 or b /= 0 loop 

3. if a mod 2 = 0 then r(i) := 0; 

4. else r(i) := 2 – ((a – 2*b) mod 4); 

5.  end if; 

6. old_a := a; 

7. a := b + mu*(old_a – r(i))/2; b := (r(i) – 

old_a)/2; 

8. i := i+1; 

9. end loop; 

Regarding the maximum value of tin the particular case 

where a= k and b= 0, it has been demonstrated that  

t ≈ 2log2 k                                (10) 

To summarize, doubling has been substituted by 

squaring, a simple operation over a binary field. 

Furthermore, among two successive coefficients ri. Thus, 

according to Eq. (10.66), upper bounds of the number of 

nonzero coefficients ri is given by 

S ≈ log2 k ≈ m                           (11) 

Thus, the computation of kP includes at most m 

complex operations (adding or subtracting), and the total 

computation time should be roughly half the computation 

time of that of the basic algorithms.  

In order to implement the preceding algorithm, an upper 

bound of a and b must be known. It can be demonstrated 

that  

-2
m
 ≤ a < 2

m
 and -2

m-1 
≤ b < 2

m-1         
              (12) 

So that a is an (m+ 1)-bit 2s complement number and b 

an m-bit 2s complement number. A data path for executing 

Algorithm is shown in Fig. 7. 

According to Eqs. (10) And (11), their computation time for 

point multiplication is approximately equal to  

T ≈ mTpoint-addition ≈  m
2 
(Tmod-f-product + Tmod-f-division)     (13) 
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Fig. 7: Point multiplication 

 

IV. EXPERIMENTAL RESULTS 

We have synthesized and simulated the architecture for a 

Xilinx Spartan XC3s400-4pq208 FPGA, using the ISE 

13.3(nt) and ISim simulator. 

Arithmetic units were synthesized for the Koblitz curve 

recommended by NIST [14], for the finite field GF (2
m
) 

using the irreducible polynomial f(x) = x
163

+x
7
+x

6
+x

3
+1. 

Synthesis results for point addition and point multiplication 

are summarized in table I and table II. 
Simulation results by using ISim Simulator for point 

addition and point multiplication are shown as waveform in 
fig. 8 and fig. 9 respectively. 

 

 

Fig. 8: Point Addition 

 

 

Fig. 9: Point Multiplication 

 

TABLE I 

DEVICE UTILIZATION SUMMARY FOR POINT ADDITION 

Logic Utilization Used (2163) 

No. of slice FF 1176 

No. of 4 input LUTs 1772 

No. of occupied slices 944 

No. of bounded IOBs 982 

 
 

TABLE II 

DEVICE UTILIZATION SUMMARY FOR POINT MULTIPLICATION 

Logic Utilization Used (2163) 

No. of slice FF 2163 

No. of 4 input LUTs 3677 

No. of occupied slices 2092 

No. of bounded IOBs 819 

 

V. CONCLUSION 

    This paper presents an implementation of an Elliptic      

Curve co-processor components, Point addition and Point 

Multiplications. Future work will include considering more  

efficient algorithms to perform the field arithmetic 

operations, ITA for field Inversion. For the crypto-graphic 

work, the time to perform the scalar multiplication can be 

improved if projective coordinates are used to represent the 

point of the curve and the Montgomery method is used to 

compute the scalar multiplication. 
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